Task-adaptive Asymmetric Deep Cross-modal Hashing

نویسندگان

چکیده

Supervised cross-modal hashing aims to embed the semantic correlations of heterogeneous modality data into binary hash codes with discriminative labels. It can support efficient large-scale retrieval due fast speed and low storage cost. However, existing methods equally handle tasks, simply learn same couple functions in a symmetric way. Under such circumstances, characteristics different tasks are ignored sub-optimal performance may be brought. Motivated by this, we present Task-adaptive Asymmetric Deep Cross-modal Hashing (TA-ADCMH) method this paper. task-adaptive for two sub-retrieval via simultaneous representation asymmetric learning. Different from previous methods, our learning framework jointly optimizes preserving multi-modal features codes, regression query explicit With model, learned effectively preserve correlations, meanwhile, adaptively capture semantics. Besides, design an discrete optimization strategy directly which alleviates relaxing quantization errors. Extensive experiments demonstrate state-of-the-art proposed TA-ADCMH various aspects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymmetric Deep Supervised Hashing

Hashing has been widely used for large-scale approximate nearest neighbor search because of its storage and search efficiency. Recent work has found that deep supervised hashing can significantly outperform non-deep supervised hashing in many applications. However, most existing deep supervised hashing methods adopt a symmetric strategy to learn one deep hash function for both query points and ...

متن کامل

Pairwise Relationship Guided Deep Hashing for Cross-Modal Retrieval

With benefits of low storage cost and fast query speed, crossmodal hashing has received considerable attention recently. However, almost all existing methods on cross-modal hashing cannot obtain powerful hash codes due to directly utilizing hand-crafted features or ignoring heterogeneous correlations across different modalities, which will greatly degrade the retrieval performance. In this pape...

متن کامل

HashGAN: Attention-aware Deep Adversarial Hashing for Cross Modal Retrieval

As the rapid growth of multi-modal data, hashing methods for cross-modal retrieval have received considerable attention. Deep-networks-based cross-modal hashing methods are appealing as they can integrate feature learning and hash coding into end-to-end trainable frameworks. However, it is still challenging to find content similarities between different modalities of data due to the heterogenei...

متن کامل

Dual Asymmetric Deep Hashing Learning

Due to the impressive learning power, deep learning has achieved a remarkable performance in supervised hash function learning. In this paper, we propose a novel asymmetric supervised deep hashing method to preserve the semantic structure among different categories and generate the binary codes simultaneously. Specifically, two asymmetric deep networks are constructed to reveal the similarity b...

متن کامل

Unsupervised Generative Adversarial Cross-modal Hashing

Cross-modal hashing aims to map heterogeneous multimedia data into a common Hamming space, which can realize fast and flexible retrieval across different modalities. Unsupervised cross-modal hashing is more flexible and applicable than supervised methods, since no intensive labeling work is involved. However, existing unsupervised methods learn hashing functions by preserving inter and intra co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Knowledge Based Systems

سال: 2021

ISSN: ['1872-7409', '0950-7051']

DOI: https://doi.org/10.1016/j.knosys.2021.106851